Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.672
Filtrar
1.
Biomed Khim ; 70(1): 25-32, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450678

RESUMO

Isatin (indoldione-2,3) is an endogenous biological regulator found in the brain, peripheral tissues, and biological fluids of humans and animals. Its biological activity is realized via isatin-binding proteins, many of which were identified during proteomic profiling of the brain of mice and rats. A number of these proteins are related to the development of neurodegenerative diseases. Previously, using a model of experimental Parkinsonism induced by a seven-day course of rotenone injections, we have observed behavioral disturbances, as well as changes in the profile and relative content of brain isatin-binding proteins. In this study, we have investigated behavioral responses and the relative content of brain isatin-binding proteins in rats with rotenone-induced Parkinsonism 5 days after the last administration of this neurotoxin. Despite the elimination of rotenone, animals exhibited motor and coordination impairments. Proteomic profiling of isatin-binding proteins revealed changes in the relative content of 120 proteins (the relative content of 83 proteins increased and that of 37 proteins decreased). Comparison of isatin-binding proteins characterized by the changes in the relative content observed in the brain right after the last injection of rotenone (n=16) and 5 days later (n=11) revealed only two common proteins (glyceraldehyde-3-phosphate dehydrogenase and subunit B of V-type proton ATPase). However, most of these proteins are associated with neurodegeneration, including Parkinson's and Alzheimer's diseases.


Assuntos
Isatina , Transtornos Parkinsonianos , Humanos , Animais , Ratos , Proteínas de Transporte , Isatina/farmacologia , Rotenona/farmacologia , Proteômica , Encéfalo , Transtornos Parkinsonianos/induzido quimicamente
2.
Neurotoxicology ; 101: 117-127, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423185

RESUMO

The study investigated the protective effects of Hesperetin (HSP) and Hesperidin (HSD) on 1 methyl, 4 phenyl, 1,2,3,6 tetrahydropyridine hydrochloride (MPTP)-induced Parkinsonism in Drosophila melanogaster (D. melanogaster). After a lifespan study to select exposure time and concentrations, flies were co-exposed to MPTP (0.4 mg/g diet), Hesperetin (0.2 and 0.4 mg/g diet), and Hesperidin (0.1 and 0.4 mg/g) for 7 days. In addition to in vivo parameters, we assayed some markers of oxidative stress and antioxidant status (lipid peroxidation, protein carbonylation, thiol content, hydrogen peroxide, and nitrate/nitrite levels, mRNA expression of Keap-1 (Kelch-like ECH associated protein 1), /Nrf2 (Nuclear factor erythroid 2 related factor 2), catalase, and glutathione-S-transferase (GST) activities), and cholinergic (acetyl cholinesterase activity (AChE) and dopaminergic signaling content and the mRNA expression of tyrosine hydroxylase (TH), monoamine oxidase (MAO-like) activity). In addition to increasing the lifespan of flies, we found that both flavonoids counteracted the adverse effects of MPTP on survival, offspring emergence, and climbing ability of flies. Both flavonoids also reduced the oxidative damage on lipids and proteins and reestablished the basal levels of pro-oxidant species and activities of antioxidant enzymes in MPTP-exposed flies. These responses were accompanied by the normalization of the mRNA expression of Keap1/Nrf2 disrupted in flies exposed to MPTP. MPTP exposure also elicited changes in mRNA expression and content of TH as well as in MAO and AChE activity, which were reversed by HST and HSD. By efficiently hindering the oxidative stress in MPTP-exposed flies, our findings support the promising role of Hesperetin and Hesperidin as adjuvant therapy to manage Parkinsonism induced by chemicals such as MPTP.


Assuntos
Hesperidina , Doença de Parkinson , Transtornos Parkinsonianos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Drosophila melanogaster , Hesperidina/farmacologia , Hesperidina/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Flavonoides/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/prevenção & controle , Fenótipo , Monoaminoxidase/metabolismo , RNA Mensageiro/metabolismo
3.
J Chem Neuroanat ; 135: 102366, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040269

RESUMO

BACKGROUND: Earlier reports suggest that vitamin D3 (Vit D3) supplementation attenuates Parkinsonism in drug-induced motor deficits. Moreover, the function of Vit D3 may be optimized by co-administration with vitamin A (Vit A). In line with the synergistic interplay between vitamins, we hypothesized that the efficacy of Vit D3 to attenuate Parkinsonism in a haloperidol-induced mouse model of motor deficits would be more potent when concomitantly administered with Vit A. METHODS: Thirty-six (36) adult male mice were randomly divided into six groups of six animals each: the control group, the PD model (haloperidol-treated only group) (-D2), and four other groups treated with haloperidol together with either one or two of the following vitamin supplementations: Vit D3, Vit A, Vit D3 +VA, or bromocriptine a known PD drug respectively. Motor functions were assessed using a battery of neurobehavioral tests in experimental animals, after which brain tissues were harvested and processed for biochemical and histomorphological analysis. RESULTS: We recorded a significant decline in motor activity in the PD mice model treated with haloperidol alone compared to other experimental groups that received vitamin supplementations. The significant decrease in motor activity observed in the PD mice model corresponded with marked neurodegenerative features in the cytoarchitecture of the pyramidal cells in the striatum and primary motor cortex (M1). Furthermore, the haloperidol-induced PD mice model treated with Vit D3 +Vit A showed significant improvement in motor activity and attenuation of oxidative stress levels and neurodegenerative features compared to other groups treated with Vit A, Vit D3 and bromocriptine alone. CONCLUSION: Altogether, our findings suggest that concomitant administration of both Vit D3 and Vit A prevents the development of Parkinsonism features in the haloperidol mouse model of motor deficit. Thus, supplementation with Vit D3 +Vit A may be a viable option for slowing the onset and progression of motor deficits.


Assuntos
Colecalciferol , Transtornos Parkinsonianos , Masculino , Camundongos , Animais , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Haloperidol/farmacologia , Bromocriptina , Vitaminas/farmacologia , Vitaminas/uso terapêutico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Suplementos Nutricionais
4.
Mol Neurobiol ; 61(2): 953-970, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37674036

RESUMO

Cypermethrin impairs mitochondrial function, induces redox imbalance, and leads to Parkinsonism in experimental animals. Knockdown of deglycase-1 (DJ-1) gene, which encodes a redox-sensitive antioxidant protein, aggravates cypermethrin-mediated α-synuclein overexpression and oxidative alteration of proteins. DJ-1 is also reported to be essential for maintaining stability of nuclear factor erythroid 2-related factor 2 (Nrf2), shielding cells against oxidative insult. Leucine-rich repeat kinase 2 (LRRK2), another protein associated with Parkinson's disease, is also involved in regulating mitochondrial function. However, underlying molecular mechanisms remain elusive. The study intended to explore an interaction of DJ-1, LRRK2, and Nrf2 in the regulation of mitochondrial function in cypermethrin-induced Parkinsonism. Small interfering RNA-mediated knockdown of DJ-1 and LRRK2 gene and pharmacological activation of Nrf2 were performed in rats and/or human neuroblastoma cells with or without cypermethrin. Indexes of oxidative stress, mitochondrial impairment, and Parkinsonism along with α-synuclein expression, post-translational modification, and aggregation were measured. DJ-1 gene knockdown exacerbated cypermethrin-induced increase in oxidative stress and intrinsic apoptosis and reduction in expression of mitochondrial antioxidant proteins via inhibiting nuclear translocation of Nrf2. Additionally, cypermethrin-induced oxidative stress, mitochondrial impairment, and α-synuclein expression and aggregation were found to be suppressed by LRRK2 gene knockdown, by promoting Nrf2 nuclear translocation and expression of mitochondrial antioxidant proteins. Furthermore, Nrf2 activator, sulforaphane, ameliorated cypermethrin-induced mitochondrial impairment and oxidative stress and provided protection against dopaminergic neuronal death. The findings indicate that DJ-1 and LRRK2 independently alter Nrf2-mediated changes and a complex interplay among DJ-1, LRRK2, and Nrf2 exists in the regulation of mitochondrial function in cypermethrin-induced Parkinsonism.


Assuntos
Antioxidantes , Transtornos Parkinsonianos , Piretrinas , Animais , Humanos , Ratos , alfa-Sinucleína/metabolismo , Antioxidantes/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo
5.
J Chem Neuroanat ; 136: 102385, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160784

RESUMO

Parkinson's Disease (PD) is an age-dependent, incessant, dynamic neurodegenerative illness. In animal models, the administration of the dopaminergic D2 antagonist Haloperidol (HP) affects the nigrostriatal pathway, inducing catalepsy, a state of immobility like PD, bradykinesia, and akinesia. The present study investigated the neural effects of Icariin (ICA), a flavonoid derived from Herba Epimedii, against HP-induced PD in rats compared to a standard drug levodopa (L-DOPA). Twenty-four adult male rats were divided into 4 groups: the control group treated with vehicle, the 2nd group treated with HP intraperitoneally, the 3rd group treated with the same dose of HP+L-DOPA orally, and the 4th one, treated with the same dose of HP+ICA orally. All the groups were treated for fourteen consecutive days. Two days before the last dose, locomotor activity was assessed in open field and rotarod tasks. At the end of the experiment, the malondialdehyde, nitric oxide (NO), iron, glycogen synthase kinase-3beta (GSK-3ß), and tyrosine hydroxylase (TH) contents, glutathione S-transferase, catalase, superoxide dismutase, activities were estimated in the midbrain. Also, cortex and midbrain monoamine contents (norepinephrine, dopamine, and serotonin) were determined. Moreover, the midbrain histopathology was detected in all treated groups. The results suggested that the neuroleptic effect of HP was completely improved by ICA. This improvement occurred by decreasing the neurotoxicity via lowering midbrain lipid peroxidation, NO, GSK-3ß contents, increasing antioxidant biomarkers, TH, and recovering the treated groups' cortex and midbrain monoamines contents. In conclusion, this study suggests that ICA is a suitable treatment for Parkinson's induced by HP.


Assuntos
Flavonoides , Doença de Parkinson , Transtornos Parkinsonianos , Ratos , Masculino , Animais , Dopamina/metabolismo , Glicogênio Sintase Quinase 3 beta , Levodopa/uso terapêutico , Haloperidol/efeitos adversos , Tirosina 3-Mono-Oxigenase/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Modelos Animais de Doenças
6.
Asian J Psychiatr ; 91: 103857, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128353

RESUMO

INTRODUCTION: Given the similar efficacies across antipsychotic medications for schizophrenia, understanding their safety profiles, particularly concerning receptor-binding differences, is crucial for optimal drug selection, especially for patients with first episode schizophrenia. We aimed to compare the safety outcomes of second-generation antipsychotics. METHODS: We conducted a retrospective cohort study with new user active comparator design using a nationwide claims database in South Korea. Participants were drug-naïve adult patients with first-episode schizophrenia. Three representative drugs with different pharmacologic profiles were compared: risperidone, olanzapine, and aripiprazole. Propensity scores were used to match the study groups, and the Cox proportional hazard model was used to calculate hazard ratios. Sensitivity analyses were performed in various epidemiological settings. Seventeen safety outcomes, including neuropsychiatric, cardiometabolic and gastrointestinal events, were assessed, with upper-respiratory-tract infection as a negative control outcome. RESULTS: A total of 1044, 2078, and 3634 participants were matched for olanzapine vs. risperidone, olanzapine vs. aripiprazole, and risperidone vs. aripiprazole comparisons, respectively. For parkinsonism, there was a significant difference in outcomes between the risperidone and aripiprazole groups (HR 1.80 [95% CI 1.13-2.91]), with consistent sensitivity analysis results. There were no significant differences in other neuropsychiatry outcomes or in the risk of cardiometabolic and gastrointestinal outcomes between any of the comparative group pairs. CONCLUSIONS: The risk of drug-induced parkinsonism was significantly higher with risperidone than with aripiprazole. Although olanzapine is known for its metabolic risk, there were no significant differences in risk between the other pairs.


Assuntos
Antipsicóticos , Doenças Cardiovasculares , Transtornos Parkinsonianos , Quinolonas , Esquizofrenia , Adulto , Humanos , Antipsicóticos/efeitos adversos , Esquizofrenia/tratamento farmacológico , Olanzapina/efeitos adversos , Aripiprazol/efeitos adversos , Risperidona/efeitos adversos , Estudos de Coortes , Estudos Retrospectivos , Benzodiazepinas/efeitos adversos , Piperazinas , República da Coreia/epidemiologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Doenças Cardiovasculares/induzido quimicamente
7.
Behav Brain Res ; 460: 114815, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38122905

RESUMO

Transcranial direct current stimulation (tDCS) is increasingly being used for Parkinson's disease (PD); however, the evaluation of its clinical impact remains complex owing to the heterogeneity of patients and treatments. Therefore, we used a unilateral 6-hydroxydopamine-induced PD rat model to investigate whether anodal tDCS of the primary motor cortex (M1) alleviates PD motor deficits. Before tDCS treatment, unilateral PD rats preferentially used the forelimb ipsilateral to the lesion in the exploratory cylinder test and showed reduced locomotor activity in the open field test. In addition, PD-related clumsy forelimb movements during treadmill walking were detected using deep learning-based video analysis (DeepLabCut). When the 5-day tDCS treatment began, the forelimb-use asymmetry was ameliorated gradually, and locomotor activity increased to pre-lesion levels. tDCS treatment also normalized unnatural forelimb movement during walking and restored a balanced gait. However, these therapeutic effects were rapidly lost or gradually disappeared when the tDCS treatment was terminated. Histological analysis at the end of the experiment revealed that the animals had moderately advanced PD, with 40-50% of dopamine neurons and fibers preserved on the injured side compared with those on the intact side. Although it remains a challenge to elucidate the neural mechanisms of the transient improvement in motor function induced by tDCS, the results of this study provide evidence that tDCS of the M1 produces positive behavioral outcomes in PD animals and provides the basis for further clinical research examining the application of tDCS in patients with PD.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Estimulação Transcraniana por Corrente Contínua , Humanos , Ratos , Animais , Estimulação Transcraniana por Corrente Contínua/métodos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/terapia , Locomoção
8.
Biomed Khim ; 69(5): 290-299, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37937431

RESUMO

Effects of the endogenous neuroprotector isatin and the pharmacological drug afobazole (exhibiting neuroprotective properties) on behavioral reactions and quantitative changes in the brain proteomic profile have been investigated in rats with experimental rotenone Parkinsonism. A single dose of isatin (100 mg/kg subcutaneously on the last day of a 7-day course of rotenone administration) improved the motor activity of rats with rotenone-induced Parkinsonism in the open field test (horizontal movements) and the rotating rod test. Afobazole (10 mg/kg intraperitoneally, daily during the 7-day course of rotenone administration) reduced the manifestations of rigidity and postural instability. Proteomic analysis, performed using brain samples obtained the day after the last administration of rotenone and neuroprotectors, revealed similar quantitative changes in the brain of rats with rotenone Parkinsonism. An increase in the relative content of 65 proteins and a decrease in the relative content of 21 proteins were detected. The most pronounced changes - an almost ninety-fold increase in the alpha-synuclein content - were found in the brains of rats treated with isatin. In animals of the experimental groups treated with "Rotenone + Isatin", as well as "Rotenone + Afobazole", the increase in the relative content of this protein in the brain was almost 60 and 50 times higher than the control values. Taking into consideration the known data on the physiological role of alpha-synuclein, an increase in the content of this protein in the brain upon administration of neuroprotectors to animals with rotenone Parkinsonism may represent a compensatory reaction, at least in the early stages of this disease and the beginning of its treatment.


Assuntos
Isatina , Fármacos Neuroprotetores , Transtornos Parkinsonianos , Ratos , Animais , Rotenona/efeitos adversos , Rotenona/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Isatina/farmacologia , Isatina/metabolismo , Octoxinol/efeitos adversos , Octoxinol/metabolismo , alfa-Sinucleína , Proteômica , Encéfalo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo
9.
Neurotoxicology ; 99: 226-243, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37926220

RESUMO

Exposure to pesticides is associated with an increased risk of developing Parkinson's disease (PD). Currently, rodent-based risk assessment studies cannot adequately capture neurodegenerative effects of pesticides due to a lack of human-relevant endpoints targeted at neurodegeneration. Thus, there is a need for improvement of the risk assessment guidelines. Specifically, a mechanistic assessment strategy, based on human physiology and (patho)biology is needed, which can be applied in next generation risk assessment. The Adverse Outcome Pathway (AOP) framework is particularly well-suited to provide the mechanistic basis for such a strategy. Here, we conducted a semi-systematic review in Embase and MEDLINE, focused on neurodegeneration and pesticides, to develop an AOP network for parkinsonian motor symptoms. Articles were labelled and included/excluded using the online platform Sysrev. Only primary articles, written in English, focused on effects of pesticides or PD model compounds in models for the brain were included. A total of 66 articles, out of the 1700 screened, was included. PD symptoms are caused by loss of function and ultimately death of dopaminergic neurons in the substantia nigra (SN). Our literature review highlights that a unique feature of these cells that increases their vulnerability is their reliance on continuous low-level influx of calcium. As such, excess intracellular calcium was identified as a central early Key Event (KE). This KE can lead to death of dopaminergic neurons of the SN, and eventually parkinsonian motor symptoms, via four distinct pathways: 1) activation of calpains, 2) endoplasmic reticulum stress, 3) impairment of protein degradation, and 4) oxidative damage. Several receptors have been identified that may serve as molecular initiating events (MIEs) to trigger one or more of these pathways. The proposed AOP network provides the biological basis that can be used to develop a mechanistic testing strategy that captures neurodegenerative effects of pesticides.


Assuntos
Rotas de Resultados Adversos , Doença de Parkinson , Transtornos Parkinsonianos , Praguicidas , Humanos , Doença de Parkinson/metabolismo , Cálcio/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Neurônios Dopaminérgicos , Praguicidas/efeitos adversos , Substância Negra
10.
Food Chem Toxicol ; 181: 114069, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820786

RESUMO

Parkinson's disease (PD) is characterized by motor impairments and progressive dopaminergic neuronal death in the substantia nigra (SN). Recently, the involvement of other regulated cell death (RCD) machineries has been highlighted in PD. Necroptosis is controlled by p-RIPK1, p-RIPK3, and p-MLKL and negatively regulated by caspase-8. Ferroptosis is characterized by iron overload and accumulation of reactive oxygen species. Interestingly, the molecular chaperone complex HSP90/CDC37 has been reported to directly regulate necroptosis, ferroptosis, and some PD-associated proteins. We investigated the potential anti-necroptotic and anti-ferroptotic effects of the anti-cancer drug pazopanib, uncovering the HSP90/CDC37 complex as a master RCD modulator in rotenone-induced Parkinsonism in rats. Oral administration of 15 mg/kg pazopanib to rotenone-intoxicated rats for three weeks improved motor deficits, debilitated histopathological changes, and increased striatal dopaminergic levels. Pazopanib suppressed LRRK2 and c-Abl. Pazopanib displayed an anti-necroptotic effect through inhibition of the p-RIPK1/p-RIPK3/p-MLKL pathway and activation of caspase-8. Moreover, pazopanib inhibited the ferroptotic p-VEGFR2-PKCßII-PLC-γ-ACSL-4 pathway, iron, 4-HNE, and PTGS2 while increasing GPX-4 and GSH levels. Taken together, the current research sheds light on the repositioning of pazopanib targeting HSP90/CDC37 and its multiple RCD mechanisms, which would offer a new perspective for therapeutic strategies in PD.


Assuntos
Ferroptose , Doença de Parkinson , Transtornos Parkinsonianos , Ratos , Animais , Rotenona/toxicidade , Caspase 8/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo
11.
Plant Foods Hum Nutr ; 78(4): 654-661, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796415

RESUMO

Parkinson's disease (PD) and other age-related neurodegenerative ailments have a strong link to oxidative stress. Bioflavonoid naringenin has antioxidant properties. The effects of pre- and post-naringenin supplementation on a rotenone-induced PD model were examined in this work. Naringenin (50 mg/kg, p.o.) was administered to rats for two weeks before the administration of rotenone in the pre-treatment phase. In contrast, rotenone (1.5 mg/kg, s.c.) was administered for eight days before naringenin (50 mg/kg, p.o.) was supplemented for two weeks in the post-treatment phase. During behavioral investigation, the motor and non-motor signs of PD were observed. Additionally, estimation of neurochemical and biochemical parameters was also carried out. Compared to controls, rotenone treatment substantially increased oxidative stress, altered neurotransmitters, and caused motor and non-motor impairments. Rotenone-induced motor and non-motor impairments were considerably reduced by naringenin supplementation. The supplementation also increased antioxidant enzyme activities and restored the changes in neurotransmitter levels. The findings of this work strongly imply that daily consumption of flavonoids such as naringenin may have a therapeutic potential to combat PD.


Assuntos
Fármacos Neuroprotetores , Transtornos Parkinsonianos , Ratos , Animais , Rotenona/toxicidade , Antioxidantes/farmacologia , Alimento Funcional , Modelos Animais de Doenças , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Estresse Oxidativo , Fármacos Neuroprotetores/efeitos adversos
12.
Pharmacol Biochem Behav ; 231: 173637, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37714223

RESUMO

Group II metabotropic glutamate receptors (mGlu2/3 receptors) have been regarded as promising candidates for the treatment of L-DOPA-induced dyskinesia (LID); however, confirmation is still lacking. As the hub of the basal ganglia circuit, the striatum plays a critical role in action control. Supersensitive responsiveness of glutamatergic corticostriatal input may be the key mechanism for the development of LID. In this study, we first examined the potency of LY354740 (12 mg/kg, i.p.) in modulating glutamate and dopamine release in lesioned striatum of stable LID rats. Then, we injected LY354740 (20nmoL or 40nmoL in 4 µL of sterile 0.9 % saline) directly into the lesioned striatum to verify its ability to reduce or attenuate L-DOPA-induced abnormal involuntary movements. In experiment conducted in established LID rats, after continuous injection for 4 days, we found that LY354740 significantly reduced the expression of dyskinesia. In another experiment conducted in parkinsonism rat models, we found that LY354740 attenuated the development of LID with an inverted-U dose-response curve. The role of LY354740 in modulating striatal expressions of LID-related molecular changes was also assessed after these behavioral experiments. We found that LY354740 significantly inhibited abnormal expressions of p-Fyn/p-NMDA/p-ERK1/2/p-HistoneH3/ΔFosB, which is in line with its ability to alleviate abnormal involuntary movements in both LID expression and induction phase. Our study indicates that activation of striatal mGlu2/3 receptors can attenuate the development of dyskinesia in parkinsonism rats and provide some functional improvements in LID rats by inhibiting LID-related molecular changes.


Assuntos
Discinesia Induzida por Medicamentos , Transtornos Parkinsonianos , Ratos , Animais , Levodopa/efeitos adversos , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Corpo Estriado/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Oxidopamina , Antiparkinsonianos/efeitos adversos , Modelos Animais de Doenças
13.
Cell Rep Med ; 4(10): 101208, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37774703

RESUMO

Dyskinesia is involuntary movement caused by long-term medication with dopamine-related agents: the dopamine agonist 3,4-dihydroxy-L-phenylalanine (L-DOPA) to treat Parkinson's disease (L-DOPA-induced dyskinesia [LID]) or dopamine antagonists to treat schizophrenia (tardive dyskinesia [TD]). However, it remains unknown why distinct types of medications for distinct neuropsychiatric disorders induce similar involuntary movements. Here, we search for a shared structural footprint using magnetic resonance imaging-based macroscopic screening and super-resolution microscopy-based microscopic identification. We identify the enlarged axon terminals of striatal medium spiny neurons in LID and TD model mice. Striatal overexpression of the vesicular gamma-aminobutyric acid transporter (VGAT) is necessary and sufficient for modeling these structural changes; VGAT levels gate the functional and behavioral alterations in dyskinesia models. Our findings indicate that lowered type 2 dopamine receptor signaling with repetitive dopamine fluctuations is a common cause of VGAT overexpression and late-onset dyskinesia formation and that reducing dopamine fluctuation rescues dyskinesia pathology via VGAT downregulation.


Assuntos
Discinesia Induzida por Medicamentos , Transtornos Parkinsonianos , Camundongos , Animais , Agonistas de Dopamina/efeitos adversos , Levodopa/efeitos adversos , Dopamina , Antiparkinsonianos/efeitos adversos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Discinesia Induzida por Medicamentos/etiologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/patologia , Oxidopamina/efeitos adversos , Ácido gama-Aminobutírico/efeitos adversos
14.
Biomolecules ; 13(8)2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37627255

RESUMO

Manganese (Mn) exposure has evolved from acute, high-level exposure causing manganism to low, chronic lifetime exposure. In this latter scenario, the target areas extend beyond the globus pallidus (as seen with manganism) to the entire basal ganglia, including the substantia nigra pars compacta. This change of exposure paradigm has prompted numerous epidemiological investigations of the occurrence of Parkinson's disease (PD), or parkinsonism, due to the long-term impact of Mn. In parallel, experimental research has focused on the underlying pathogenic mechanisms of Mn and its interactions with genetic susceptibility. In this review, we provide evidence from both types of studies, with the aim to link the epidemiological data with the potential mechanistic interpretation.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Manganês/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/epidemiologia , Doença de Parkinson/epidemiologia , Doença de Parkinson/etiologia , Predisposição Genética para Doença
15.
Naunyn Schmiedebergs Arch Pharmacol ; 396(10): 2347-2355, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37410156

RESUMO

LY-404,039 is an orthosteric agonist of metabotropic glutamate 2 and 3 receptors (mGluR2/3) that may harbour additional agonist effect at dopamine D2 receptors. LY-404,039 and its pro-drug, LY-2140023, have previously entered clinical trials as treatment options for schizophrenia. They could therefore be repurposed, if proven efficacious, for other conditions, notably Parkinson's disease (PD). We have previously shown that the mGluR2/3 orthosteric agonist LY-354,740 alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia and psychosis-like behaviours (PLBs) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. Unlike LY-404,039, LY-354,740 does not stimulate dopamine D2 receptors, suggesting that LY-404,039 may elicit broader therapeutic effects in PD. Here, we sought to investigate the effect of this possible additional dopamine D2-agonist action of LY-404,039 by assessing its efficacy on dyskinesia, PLBs and parkinsonism in the MPTP-lesioned marmoset. We first determined the pharmacokinetic profile of LY-404,039 in the marmoset, in order to select doses resulting in plasma concentrations known to be well tolerated in the clinic. Marmosets were then injected L-DOPA with either vehicle or LY-404,039 (0.1, 0.3, 1 and 10 mg/kg). The addition of LY-404,039 10 mg/kg to L-DOPA resulted in a significant reduction of global dyskinesia (by 55%, P < 0.01) and PLBs (by 50%, P < 0.05), as well as reduction of global parkinsonism (by 47%, P < 0.05). Our results provide additional support of the efficacy of mGluR2/3 orthosteric stimulation at alleviating dyskinesia, PLBs and parkinsonism. Because LY-404,039 has already been tested in clinical trials, it could be repurposed for indications related to PD.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Transtornos Parkinsonianos , Transtornos Psicóticos , Animais , Levodopa/farmacologia , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Callithrix , Dopamina , Comportamento Animal , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/etiologia , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Doença de Parkinson/tratamento farmacológico , Transtornos Psicóticos/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina
16.
Ecotoxicol Environ Saf ; 263: 115238, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441952

RESUMO

Although adequate intake of manganese (Mn) is essential to humans, Mn in excess is neurotoxic. Exposure to extremely high doses of Mn results in "manganism", a condition that exhibits Parkinson-like symptoms. However, the mechanisms underlying its neurotoxic effects in Mn-induced parkinsonism pathogenesis are unclear. In this study, 8-week-old male C57BL/6 J mice were injected intraperitoneally with saline and 50 mg/kg MnCl2 respectively once daily for 14 days to produce an acute Mn neurotoxicity model. Accumulation of Mn in the midbrain, motor dysfunction and loss of dopaminergic neurons in the substantia nigra evidenced Mn neurotoxicity. Untargeted lipidomic analysis demonstrated that Mn overexposure altered lipidome profiles. A significant modulation of 12 lipid subclasses belonging to 5 different categories were found in the midbrain and among the most abundant lipids were sphingolipids, glycerophospholipids, and glycerides. The levels of sphingomyelin (SM) were significantly decreased after Mn treatment. The expression of SM biosynthesis genes was decreased dramatically while sphingomyelinase was up-regulated. In addition, we observed oxidative stress in both the midbrain of mice and MN9D cells, indicated by the increase of MDA level, the decrease of reduced GSH level and the inhibition of SOD and GPx enzyme activities. There was a correlation between these changes and motor dysfunctions. Overall, our study is the first to use lipidomics techniques to explore the pathogenesis of Mn-induced parkinsonism in C57BL/6 J mice. Mn induced molecular events in the midbrain, such as lipid metabolism disorders, oxidative stress and dopaminergic neurons injury, may mechanistically play important roles in the pathogenesis of Parkinson-like symptoms. Moreover, these findings emphasize the necessity for reducing the health risk of environmental neurotoxic pollutants in relation to parkinsonism.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Masculino , Humanos , Animais , Camundongos , Manganês/toxicidade , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Transtornos Parkinsonianos/induzido quimicamente , Lipídeos
17.
Psychopharmacology (Berl) ; 240(10): 2093-2099, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37516708

RESUMO

RATIONALE: Positive allosteric modulation of metabotropic glutamate type 4 (mGlu4) receptors is a promising strategy to alleviate parkinsonian disability and L-3,4-dihydroxyphenylalanine (L-DOPA) induced dyskinesia. ADX-88178 is a highly selective mGlu4 positive allosteric modulator (PAM) that previously enhanced the anti-parkinsonian action of L-DOPA in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease (PD). OBJECTIVES: We sought to explore the effects of ADX-88178 on psychosis-like behaviours (PLBs) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. We also aimed to determine the effect of ADX-88178 on parkinsonism and dyskinesia. METHODS: Six MPTP-lesioned marmosets were administered L-DOPA chronically to induce stable PLBs and dyskinesias. They were then administered ADX-88178 (0.01, 0.1 and 1 mg/kg) or vehicle, in combination with L-DOPA/benserazide (15/3.75 mg/kg), both sub-cutaneously, in a randomised fashion. PLBs, parkinsonism and dyskinesia were then measured. RESULTS: ADX-88178 mildly worsened global PLBs at the dose of 1 mg/kg (by 13%, P = 0.020). L-DOPA alone conferred 158 min of on-time, while the duration of on-time was 212 min (34% increase, P = 0.011), after adding ADX-88178 1 mg/kg to L-DOPA. Accordingly, ADX-88178 1 mg/kg reduced global parkinsonian disability, by 38% (P = 0.0096). ADX-88178 1 mg/kg diminished peak dose dyskinesia by 34% (P = 0.015). Minimal effects were provided by lower doses. CONCLUSIONS: Whereas these results provide additional evidence of the anti-parkinsonian and anti-dyskinetic effects of mGlu4 positive allosteric modulation as an adjunct to L-DOPA, they also suggest that ADX-88178 may exacerbate dopaminergic psychosis. Further studies are needed to evaluate this possible adverse effect of mGlu4 PAMs on PD psychosis.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Transtornos Parkinsonianos , Transtornos Psicóticos , Ratos , Animais , Levodopa/efeitos adversos , Callithrix , Antiparkinsonianos/farmacologia , Comportamento Animal , Discinesia Induzida por Medicamentos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Transtornos Psicóticos/tratamento farmacológico
18.
Pharmacoepidemiol Drug Saf ; 32(12): 1378-1386, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37491627

RESUMO

BACKGROUND: The disease burden of parkinsonism is extremely costly in the United States. Unlike Parkinson's disease, drug-induced parkinsonism (DIP) is acute and reversible; exploring the causative drug is important to prevent DIP in patients at high-risk of parkinsonism. OBJECTIVE: To examine whether the use of gastrointestinal (GI) prokinetics is associated with an increased risk of parkinsonism. METHODS: We conducted a case-crossover study using nationally representative data. We included patients who were newly diagnosed with parkinsonism (ICD-10 G20, G21.1, G25.1) between January 1, 2007 and December 1, 2015. The first prescription date of G20, G21.1, or G25.1 diagnoses was defined as the index date (0 day). Patients with prior extrapyramidal and movement disorders or brain tumors were excluded. We assessed the exposure within the risk (0-29 days) and control periods (60-89 days), before or on the index date. Conditional logistic regression estimated the adjusted odds ratio (aOR) for parkinsonism. RESULTS: Overall, 2268 and 1674 patients were exposed to GI prokinetics during the risk and control periods, respectively. The use of GI prokinetics significantly increased the occurrence of parkinsonism (aOR = 2.31; 95% Confidence Interval [CI], 2.06-2.59). The use of GI prokinetics was associated with a higher occurrence of parkinsonism in elderly patients (≥65 years old; aOR = 2.69; 95% CI, 2.30-3.14) than in younger patients (aOR = 1.90; 95% CI, 1.59-2.27). CONCLUSIONS: The use of GI prokinetics was significantly associated with higher occurrences of parkinsonism, necessitating close consideration when using GI prokinetics.


Assuntos
Doença de Parkinson Secundária , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Estados Unidos/epidemiologia , Idoso , Estudos Cross-Over , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/epidemiologia , Estudos de Casos e Controles , Doença de Parkinson/epidemiologia , Doença de Parkinson/etiologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/epidemiologia
19.
Biomed Khim ; 69(3): 188-192, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37384911

RESUMO

Isatin (indoldione-2,3) is an endogenous regulator found in humans and animals. It exhibits a broad range of biological activity mediated by numerous isatin-binding proteins. Isatin produces neuroprotective effects in several experimental models of diseases, including Parkinsonism induced by the neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine).Rotenone (a neurotoxin used to modeling Parkinson's disease in rodents) causes significant changes in the profile of isatin-binding proteins of rat brain. Comparative proteomic identification of brain proteins of control rats and the rats with the rotenone-induced Parkinsonian syndrome (PS) revealed significant quantitative changes of 86 proteins under the influence of rotenone. This neurotoxin mainly caused the increase of the quantity of proteins involved in signal transduction and regulation of enzyme activity (24), proteins involved in cytoskeleton formation and exocytosis (23), and enzymes involved in energy generation and carbohydrate metabolism (19). However, only 11 of these proteins referred to isatin-binding proteins; the content of eight of them increased while the content of three proteins decreased. This suggests that the dramatic change of the profile of isatin-binding proteins, found in the development of the rotenone-induced PS, comes from changes in the state of the pre-existing molecules of proteins, rather than altered expression of corresponding genes.


Assuntos
Isatina , Transtornos Parkinsonianos , Humanos , Ratos , Animais , Proteínas de Transporte , Isatina/farmacologia , Rotenona/toxicidade , Neurotoxinas , Proteômica , Encéfalo , Transtornos Parkinsonianos/induzido quimicamente
20.
Open Biol ; 13(5): 220370, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37192671

RESUMO

Nitric oxide (NO) plays a pivotal role in integrating dopamine transmission in the basal ganglia and has been implicated in the pathogenesis of Parkinson disease (PD). The objective of this study was to ascertain whether the NO synthase inhibitor, 7-nitroindazole (7-NI), is able to reduce L-DOPA-induced dyskinesias (LIDs) in a non-human primate model of PD chronically intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Six Parkinsonian macaques were treated daily with L-DOPA for 3-4 months until they developed LIDs. Three animals were then co-treated with a single dose of 7-NI administered 45 min before each L-DOPA treatment. Dyskinetic MPTP-treated monkeys showed a significant decrease in LIDs compared with their scores without 7-NI treatment (p < 0.05). The anti-Parkinsonian effect of L-DOPA was similar in all three monkeys with and without 7-NI co-treatment. This improvement was significant with respect to the intensity and duration of LIDs while the beneficial effect of L-DOPA treatment was maintained and could represent a promising therapy to improve the quality of life of PD patients.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Transtornos Parkinsonianos , Animais , Levodopa/efeitos adversos , Antiparkinsonianos/efeitos adversos , Qualidade de Vida , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/etiologia , Doença de Parkinson/tratamento farmacológico , Primatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...